Dimension(s) of compact *F*-spaces Quidquid latine dictum sit, altum videtur

K. P. Hart

Faculty EEMCS TU Delft

Hejnice, 1. Únor, 2012: 17:30 - 18:10

- 2 Can we generalize?
- 3 Finite-to-one maps

Can we generalize? Finite-to-one maps Questions Sources

- 2 Can we generalize?
- 3 Finite-to-one maps

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Can we generalize? Finite-to-one maps Questions Sources

Hurewicz' theorem

Theorem

Let X be separable and metrizable and $n \in \mathbb{N}$.

Can we generalize? Finite-to-one maps Questions Sources

Hurewicz' theorem

Theorem

Let X be separable and metrizable and $n \in \mathbb{N}$. Then the dimension of X is at most n if and only if there are a zero-dimensional, separable and metrizable space Y and a closed continuous surjection $f : Y \to X$ such that $|f^{\leftarrow}(x)| \leq n+1$ for all $x \in X$.

About the proofs

One direction uses the large inductive dimension.

Theorem

If Y is normal and strongly zero-dimensional and $f : Y \to X$ is closed, continuous and onto with $|f^{\leftarrow}(x)| \leq n+1$ for all $x \in X$ then $\operatorname{Ind} X \leq n$.

Can we generalize? Finite-to-one maps Questions Sources

About the proofs

Proof.

By induction (of course).

・日・ ・ヨ・ ・

K. P. Hart Dimension(s) of compact *F*-spaces

Can we generalize? Finite-to-one maps Questions Sources

About the proofs

Proof.

By induction (of course). Given disjoint closed sets A and B in X find a closed set Z in Y such that f[Z] is a partition between and $f \upharpoonright Z$ has fibers of size at most n.

Can we generalize? Finite-to-one maps Questions Sources

About the proofs

Proof.

By induction (of course).

Given disjoint closed sets A and B in X find a closed set Z in Y such that f[Z] is a partition between and $f \upharpoonright Z$ has fibers of size at most n.

The speaker draws an instructive picture ...

About the proofs

The other direction uses the covering dimension dimension. dim $X \leq n$ iff for every open cover \mathcal{U} of X of cardinality n + 2there is an open refinement $\mathcal{V} = \{V_U : U \in \mathcal{U}\}$ with $\bigcap \{ \text{cl } V : V \in \mathcal{V} \} = \emptyset.$ Refinement: $V_U \subseteq U$ for all U and $\bigcup \mathcal{V} = X$.

Can we generalize? Finite-to-one maps Questions Sources

About the proofs

Theorem

If X is compact and metrizable with dim $X \leq n$ then there are a zero-dimensional, compact and metrizable space Y and a continuous surjection $F : Y \to X$ with $|f^{\leftarrow}(x)| \leq n+1$ for all $x \in X$.

Can we generalize? Finite-to-one maps Questions Sources

About the proofs

Proof.

Idea of proof: make finite closed covers of order at most n + 1; give these the discrete topology; take their product and let Y be a suitable subspace of that product.

What makes this work?

The reason we have an equivalence is the fundamental fact from dimension theory that dim X = ind X = Ind X for all separable and metrizable X.

What makes this work?

- The reason we have an equivalence is the fundamental fact from dimension theory that dim X = ind X = Ind X for all separable and metrizable X.
- And the compactification theorem: a separable and metrizable space has a metric compactification with the same dimension(s).

- 2 Can we generalize?
- 3 Finite-to-one maps

- 4 回 2 4 回 2 4 回 2 4

F-spaces of weight c

Experience has taught us that compact F-spaces of weight \mathfrak{c} behave in many ways like compact metrizable spaces

F-spaces of weight c

Experience has taught us that compact F-spaces of weight \mathfrak{c} behave in many ways like compact metrizable spaces, *provided the Continuum Hypothesis holds*

F-spaces of weight c

Remember: X is an F-space if every finitely generated ideal in $C^*(X)$ is principal.

F-spaces of weight c

Remember: X is an F-space if every finitely generated ideal in $C^*(X)$ is principal.

Or, somewhat more topological: disjoint cozero sets are completely separated.

F-spaces of weight c

Remember: X is an F-space if every finitely generated ideal in $C^*(X)$ is principal.

Or, somewhat more topological: disjoint cozero sets are completely separated.

Or, for normal spaces: disjoint cozero sets have disjoint closures.

Equality of dimensions

Theorem (CH)

For every compact F-space, X, of weight c we have

 $\dim X = \operatorname{ind} X = \operatorname{Ind} X$

Equality of dimensions

Theorem (CH)

For every compact F-space, X, of weight c we have

 $\dim X = \operatorname{ind} X = \operatorname{Ind} X$

Proof

The inequalities dim $X \leq \text{ind } X \leq \text{Ind } X$ hold for *every* compact space.

Proof, continued

Proof

The interesting part is the proof of $\operatorname{Ind} X \leq \dim X$.

K. P. Hart Dimension(s) of compact *F*-spaces

Proof, continued

Proof

The interesting part is the proof of $\operatorname{Ind} X \leq \dim X$. Given disjoint closed sets *A* and *B* we build a partition, *L*, between them with dim $L \leq \dim X - 1$.

Proof, continued

Proof

The interesting part is the proof of Ind $X \leq \dim X$. Given disjoint closed sets A and B we build a partition, L, between them with dim $L \leq \dim X - 1$. How: we have \aleph_1 many potential basic open covers of L of size dim X + 1; enumerate them: $\langle U_{\alpha} : \alpha < \omega_1 \rangle$.

Proof, continued

Proof

The interesting part is the proof of $\operatorname{Ind} X \leq \dim X$.

Given disjoint closed sets A and B we build a partition, L, between them with dim $L \leq \dim X - 1$.

How: we have \aleph_1 many potential basic open covers of L of size dim X + 1; enumerate them: $\langle \mathcal{U}_{\alpha} : \alpha < \omega_1 \rangle$.

Build increasing sequences $\langle C_{\alpha} : \alpha < \omega_1 \rangle$ and $\langle D_{\alpha} : \alpha < \omega_1 \rangle$ of cozero sets, with $C_{\alpha} \cap D_{\alpha} = \emptyset$ for all α .

Proof, continued

Proof

At stage α , check if $C_{\alpha} \cup D_{\alpha} \cup \bigcup \mathcal{U}_{\alpha} = X$.

· < 同 > < 三 > < 三 >

K. P. Hart Dimension(s) of compact *F*-spaces

Proof, continued

Proof

At stage α , check if $C_{\alpha} \cup D_{\alpha} \cup \bigcup \mathcal{U}_{\alpha} = X$. In that case take a refinement $\{O\} \cup \mathcal{V}_{\alpha}$ of $\{C_{\alpha} \cup D_{\alpha}\} \cup \mathcal{U}_{\alpha}$ whose closures have empty intersection.

Proof, continued

Proof

At stage α , check if $C_{\alpha} \cup D_{\alpha} \cup \bigcup \mathcal{U}_{\alpha} = X$. In that case take a refinement $\{O\} \cup \mathcal{V}_{\alpha}$ of $\{C_{\alpha} \cup D_{\alpha}\} \cup \mathcal{U}_{\alpha}$ whose closures have empty intersection. Take $C_{\alpha+1}$ and $D_{\alpha+1}$ such that $C_{\alpha} \cup \bigcap_{U \in \mathcal{U}_{\alpha}} \operatorname{cl} V_{U} \subseteq C_{\alpha+1}$ and $D_{\alpha} \subseteq D_{\alpha+1}$.

Proof, continued

Proof

At stage α , check if $C_{\alpha} \cup D_{\alpha} \cup \bigcup \mathcal{U}_{\alpha} = X$. In that case take a refinement $\{O\} \cup \mathcal{V}_{\alpha}$ of $\{C_{\alpha} \cup D_{\alpha}\} \cup \mathcal{U}_{\alpha}$ whose closures have empty intersection. Take $C_{\alpha+1}$ and $D_{\alpha+1}$ such that $C_{\alpha} \cup \bigcap_{U \in \mathcal{U}_{\alpha}} \operatorname{cl} V_{U} \subseteq C_{\alpha+1}$ and $D_{\alpha} \subseteq D_{\alpha+1}$. Apart from some technicalities this works.

3 Finite-to-one maps

<ロ> <同> <同> < 回> < 回>

A very general theorem

Theorem (CH)

Let X be a compact F-space of weight c. Then X has a base $\{B_{\alpha} : \alpha < \omega_1\}$ with the following property

A very general theorem

Theorem (CH)

Let X be a compact F-space of weight c. Then X has a base $\{B_{\alpha} : \alpha < \omega_1\}$ with the following property: whenever F is a finite subset of ω_1 the intersection

$$\bigcap_{\alpha \in F} \operatorname{Fr} B_{\alpha}$$

has dimension at most dim Fr $B_{\min F} - |F| + 1$.

About the proof

It uses a simultaneous version of the proof of $\operatorname{Ind} X \leq \dim X$.

K. P. Hart Dimension(s) of compact *F*-spaces

About the proof

It uses a simultaneous version of the proof of $\operatorname{Ind} X \leq \dim X$.

In the separable metric case one can build a partition, L, such that

 $\dim(L \cap D) \leqslant \dim D - 1$

for countably many closed sets D at once.

About the proof

It uses a simultaneous version of the proof of $\text{Ind } X \leq \dim X$. In the separable metric case one can build a partition, *L*, such that

 $\dim(L \cap D) \leqslant \dim D - 1$

for countably many closed sets D at once. In the case of a compact F-space of weight c, assuming CH, you can do this in one go for \aleph_1 many closed sets.

> **TUDelft** Delft University of Technology

A special case

Theorem (CH)

Let X be a compact F-space of weight \mathfrak{c} and dimension n. Then X has a base $\{B_{\alpha} : \alpha < \omega_1\}$ with the following property

K. P. Hart Dimension(s) of compact *F*-spaces

A special case

Theorem (CH)

Let X be a compact F-space of weight \mathfrak{c} and dimension n. Then X has a base $\{B_{\alpha} : \alpha < \omega_1\}$ with the following property:

$$\bigcap_{\alpha\in F}\operatorname{Fr}B_{\alpha}=\emptyset$$

whenever F is a subset of ω_1 with n + 1 elements.

A finite-to-one map

We may assume our base consists of regular open sets $(B_{\alpha} = \operatorname{int} \operatorname{cl} B_{\alpha}).$

A finite-to-one map

We may assume our base consists of regular open sets $(B_{\alpha} = \text{int cl } B_{\alpha})$. Take the Boolean subalgebra, *B*, of RO(*X*) generated by our base.

A finite-to-one map

We may assume our base consists of regular open sets $(B_{\alpha} = \operatorname{int} \operatorname{cl} B_{\alpha})$. Take the Boolean subalgebra, B, of RO(X) generated by our base. Then the natural map from the Stone space of B onto X is (at most) 2^{n} -to-one.

A finite-to-one map

Bummer! $2^n > n+1$ (when $n \ge 2$).

K. P. Hart Dimension(s) of compact *F*-spaces

A finite-to-one map

Bummer! $2^n > n+1$ (when $n \ge 2$).

We have an other proof, with the same result: 2^n .

- 2 Can we generalize?
- 3 Finite-to-one maps

<ロ> <同> <同> < 回> < 回>

The first question that should occur to everyone has an answer:

K. P. Hart Dimension(s) of compact *F*-spaces

The first question that should occur to everyone has an answer: There is a compact *F*-space of weight c^+ with non-coinciding dimensions (my student Jan van Mill).

An example

- The first question that should occur to everyone has an answer:
- There is a compact *F*-space of weight c^+ with non-coinciding dimensions (my student Jan van Mill).
- This parallels the 'classic' case: there are compact spaces of weight \aleph_1 with non-coinciding dimensions.

What if CH fails?

The second question that should occur to everyone has no answer (yet).

What if CH fails?

The second question that should occur to everyone has no answer (yet).

One possibility: there are many compact spaces of weight ${\mathfrak c}$ with non-coinciding dimensions.

What if CH fails?

Take such a space, X, for example with dim X = 1 and ind X = Ind X = 2.

What if CH fails?

Take such a space, X, for example with dim X = 1 and ind X = Ind X = 2. Consider $Y = \omega \times X$ and $Y^* = \beta Y \setminus Y$.

What if CH fails?

Take such a space, X, for example with dim X = 1 and ind X = Ind X = 2. Consider $Y = \omega \times X$ and $Y^* = \beta Y \setminus Y$. By our first result we have dim $Y^* = \text{ind } Y^* = \text{Ind } Y^*$ if CH holds.

What if CH fails?

Last year's tutorial: dim $C = \dim X = 1$ for every component C of Y^* .

What if CH fails?

Last year's tutorial: dim $C = \dim X = 1$ for every component C of Y^* .

Also dim $Y^* \leq \dim \beta Y = 1$, so dim $Y^* = 1$.

What if CH fails?

Last year's tutorial: dim $C = \dim X = 1$ for every component C of Y^* .

Also dim $Y^* \leq \dim \beta Y = 1$, so dim $Y^* = 1$.

Hence(!): Ind $Y^* = 1 < 2 = \text{Ind } \beta Y$ (if CH).

What if CH fails?

What can be said if CH fails? In particular models where CH fails.

K. P. Hart Dimension(s) of compact *F*-spaces

What if CH fails?

What can be said if CH fails? In particular models where CH fails. Could it be that Ind $Y^* = 2$ in some such model?

What if CH fails?

What can be said if CH fails? In particular models where CH fails. Could it be that Ind $Y^* = 2$ in some such model? There are many X to play with.

The third question on everyone's lips

K. P. Hart Dimension(s) of compact *F*-spaces

What with 2^n ?

The third question on everyone's lips: can 2^n be brought down to n + 1?

What with 2ⁿ?

The third question on everyone's lips: can 2^n be brought down to n + 1?

(As it should be.)

What with 2^n ?

The third question on everyone's lips: can 2^n be brought down to n + 1?

(As it should be.) We have no idea.

- 2 Can we generalize?
- 3 Finite-to-one maps

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Website: fa.its.tudelft.nl/~hart

📔 K. P. Hart, J. van Mill,

Covering dimension and finite-to-one maps, Topology and its Applications, **158** (2011), 2512–2519.

J. van Mill,

A compact F-space with noncoinciding dimensions, Topology and its Applications **159** (2012), 1625–1633.

Let us thank the organizers

